Full Content is available to subscribers

Subscribe/Learn More  >

A Discrete Dislocation Plasticity Analysis of Plane-Strain Indentation of a Single-Crystal Half-Space by a Smooth and a Rough Rigid Asperity

[+] Author Affiliations
X. Yin, K. Komvopoulos

University of California, Berkeley, Berkeley, CA

Paper No. IJTC2010-41155, pp. 415-417; 3 pages
  • STLE/ASME 2010 International Joint Tribology Conference
  • STLE/ASME 2010 International Joint Tribology Conference
  • San Francisco, California, USA, October 17–20, 2010
  • Conference Sponsors: Tribology Division
  • ISBN: 978-0-7918-4419-9 | eISBN: 978-0-7918-3890-7
  • Copyright © 2010 by ASME


A discrete dislocation plasticity analysis of plane-strain indentation of a single-crystal half-space by a smooth or rough (fractal) rigid asperity is presented. The emission, movement, and annihilation of edge dislocations are incorporated in the analysis through a set of constitutive rules [1,2]. It is shown that the initiation of the first dislocation is controlled by the subsurface Hertzian stress field and occurs in the ±45° direction with respect to the normal of the crystal surface, in agreement with the macroscopic yielding behavior of the indented halfspace. For fixed slip-plane direction, the dislocation density increases with the applied normal load and dislocation source density. The dislocation multiplication behavior at a given load is compared with that generated by a rough indenter with a fractal surface profile. The results of the analysis provide insight into yielding and plastic deformation phenomena in indented single-crystal materials.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In