Full Content is available to subscribers

Subscribe/Learn More  >

A 3D Finite Element Study on the Friction Effects on Material Flow Under the Cutting Edge in Superfinish Hard Milling H13 Tool Steel

[+] Author Affiliations
H. M. Singh, Y. B. Guo

The University of Alabama, Tuscaloosa, AL

Paper No. IJTC2010-41215, pp. 235-237; 3 pages
  • STLE/ASME 2010 International Joint Tribology Conference
  • STLE/ASME 2010 International Joint Tribology Conference
  • San Francisco, California, USA, October 17–20, 2010
  • Conference Sponsors: Tribology Division
  • ISBN: 978-0-7918-4419-9 | eISBN: 978-0-7918-3890-7
  • Copyright © 2010 by ASME


Milling hardened steels has emerged as a key technology in mold and die manufacturing industries. In cutting, a portion of work material is pushed upward by the tool rake face to form the chip while the other portion below this layer is ploughed under the cutting edge to become the machined surface. Although the ploughed material is a very small fraction of the uncut chip thickness, it determines surface integrity after machining. In this study, a 3D finite element simulation model of milling hardened AISI H13 tool steel (HRC 50) has been developed to study material deformation under the cutting edge of a milling insert. The ploughed depth in the range of 0.6 μm to 3.0 μm is used to study the material flow under the cutting edge. Friction between the cutting edge and workpiece surface has a significant influence on the ploughed depth. Different coefficients of friction are used to study their effects on stresses/strains and temperature during ploughing. The Johnson-Cook model is used to model the plastic behavior of workpiece material. The 3D finite element analysis gives an insight into some key issues in a milling process. The FEA model illustrates the effects of micro cutting edge geometry on pile-up in front of the cutting edge, transient stresses and temperatures, and a transition from ploughing to cutting in a milling process.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In