0

Full Content is available to subscribers

Subscribe/Learn More  >

Reducing Multiple Modes of Vibration by Digital Filtering and Input Shaping

[+] Author Affiliations
Joshua Vaughan, William Singhose

Georgia Institute of Technology, Atlanta, GA

Paper No. DSCC2010-4170, pp. 591-597; 7 pages
doi:10.1115/DSCC2010-4170
From:
  • ASME 2010 Dynamic Systems and Control Conference
  • ASME 2010 Dynamic Systems and Control Conference, Volume 2
  • Cambridge, Massachusetts, USA, September 12–15, 2010
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4418-2 | eISBN: 978-0-7918-3884-6
  • Copyright © 2010 by ASME

abstract

The residual vibration of flexible systems can be reduced by properly shaping the reference command. There has been substantial evidence presented that input shaping is better than notch filtering for shaping reference commands to suppress vibration in mechanical systems. Much of this evidence is empirical comparisons between traditional filters and robust input shapers. Recently, a proof showing that notch filters are always equal to or longer in duration than an input shaper with identical single-mode vibration suppression constraints was presented. This paper expands on that previous result by extending the proof to multi-mode systems. The important ramification of this proof is that multi-mode input shapers suppress vibration more quickly than multi-mode notch filters. Ease of design, computation, and implementation are also discussed. Simulations of an industrial bridge crane demonstrate the key differences between the two methods.

Copyright © 2010 by ASME
Topics: Filtration , Vibration

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In