Full Content is available to subscribers

Subscribe/Learn More  >

Motion Planning Under External Constraints for Redundant Dynamic Systems

[+] Author Affiliations
Joo H. Kim

Polytechnic Institute of New York University (NYU-Poly), Brooklyn, NY

Karim Abdel-Malek, Yujiang Xiang, Jasbir S. Arora

University of Iowa, Iowa City, IA

Jingzhou James Yang

Texas Tech University, Lubbock, TX

Paper No. DSCC2010-4275, pp. 263-270; 8 pages
  • ASME 2010 Dynamic Systems and Control Conference
  • ASME 2010 Dynamic Systems and Control Conference, Volume 2
  • Cambridge, Massachusetts, USA, September 12–15, 2010
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4418-2 | eISBN: 978-0-7918-3884-6
  • Copyright © 2010 by ASME


Dynamics of mechanical systems during motion usually involves reaction forces and moments due to the interaction with external objects or constraints from the environment. The problem of predicting the external reaction loads under rigid-body assumption has not been addressed extensively in the literature in terms of optimal motion planning and simulation. We propose a formulation of determining the external reaction loads for redundant systems motion planning. For dynamic equilibrium, the resultant reaction loads that include the effects of inertia, gravity, and general applied loads, are distributed to each contact point. Unknown reactions are determined along with the system configuration at each time step using iterative nonlinear optimization algorithm. The required actuator torques as well as the motion trajectories are obtained while satisfying given constraints. The formulation is applied to several example motions of multi-rigid-body systems such as a simple welding manipulator and a highly articulated whole-body human mechanism. The example results are compared with the cases where the reactions are pre-assigned.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In