Full Content is available to subscribers

Subscribe/Learn More  >

Preview-Based Output Tracking of Nonminimum-Phase Linear Systems via Trajectory Decomposition: Nanomanipulation Example

[+] Author Affiliations
Haiming Wang, Kyongsoo Kim

Iowa State University, Ames, IA

Qingze Zou

Rutgers University, Piscataway, NJ

Hongbing Xu

University of Electronic Science and Technology of China, Chengdu, Sichuan, China

Paper No. DSCC2010-4106, pp. 43-50; 8 pages
  • ASME 2010 Dynamic Systems and Control Conference
  • ASME 2010 Dynamic Systems and Control Conference, Volume 2
  • Cambridge, Massachusetts, USA, September 12–15, 2010
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4418-2 | eISBN: 978-0-7918-3884-6
  • Copyright © 2010 by ASME


In this article, a trajectory-decomposition-based approach to output tracking with preview for nonminimum-phase systems is proposed. When there exists a finite (in time) preview of the future desired trajectory, precision output tracking of nonminimum-phase systems can be achieved by using the preview-based stable-inversion technique. The preview-based stable-inversion technique has been successfully implemented in various high-speed positioning applications. The performance of this approach, however, can become sensitive to system dynamics uncertainty. Moreover, the computation involved in the implementation of this approach can be demanding. In the proposed approach, such preview-based inversion related challenges are addressed by integrating the notion of signal decomposition and the iterative learning control technique together. Particularly, a library of desired output elements and their corresponding control input elements is constructed, and the ILC techniques such as the recently-developed model-less inversion-based iterative control (MIIC) are used to obtain the control input elements that achieve precision output tracking of the corresponding desired output elements. Then the previewed future desired trajectory is decomposed as a summation of desired output elements, and the control input is synthesized by using the input elements selected for the corresponding output elements with chosen pre-actuation time. Furthermore, the required pre-actuation time is quantified based on the stable-inversion theory. The proposed approach is illustrated through simulation study of a nanomanipulation application using a nonminimum-phase piezo actuator model.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In