Full Content is available to subscribers

Subscribe/Learn More  >

PWM Control Accuracy for Scratch Drive Actuators

[+] Author Affiliations
Jenelle Armstrong Piepmeier, Samara L. Firebaugh

United States Naval Academy, Annapolis, MD

Paper No. DSCC2010-4119, pp. 9-14; 6 pages
  • ASME 2010 Dynamic Systems and Control Conference
  • ASME 2010 Dynamic Systems and Control Conference, Volume 2
  • Cambridge, Massachusetts, USA, September 12–15, 2010
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4418-2 | eISBN: 978-0-7918-3884-6


In this paper we investigate the problem of controlling a scratch drive actuator that has two discrete modes of locomotion: forward motion in a straight line, and forward motion with fixed radius curvature. This type of device can be modeled as a two-wheeled vehicle (with the previously stated constraints). By alternating between these two modes of operation, the device can move along a variable-radius curved path. In practice, the robots do not move in a purely straight manner. This paper seeks to quantify the accuracy that can be achieved by switching between the two modes of locomotion. This type of low-level open-loop control facilitates the use of a higher level feedback controller designed for two-wheeled vehicles with a variable turning radius.

Topics: Actuators



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In