Full Content is available to subscribers

Subscribe/Learn More  >

A New AFM Cantilever Design for Manipulation at the Nanoscale

[+] Author Affiliations
Fakhreddine Landolsi, Fathi H. Ghorbel

Rice University, Houston, TX

James B. Dabney

University of Houston - Clear Lake, Houston, TX

Paper No. DSCC2010-4153, pp. 979-986; 8 pages
  • ASME 2010 Dynamic Systems and Control Conference
  • ASME 2010 Dynamic Systems and Control Conference, Volume 1
  • Cambridge, Massachusetts, USA, September 12–15, 2010
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4417-5 | eISBN: 978-0-7918-3884-6
  • Copyright © 2010 by ASME


Prototyping and fabrication of nanodevices require subnanometer tolerances and highly accurate sensing and actuation. Improved control on manipulating matter at the nanoscale is of relevance in different fields such as the automotive industry, biotechnology and communication. Limitations of existing nanomanipulation systems include constrained motion of manipulator end-effectors. In the present paper, a new AFM probe design suitable for nanomanipulation is proposed. The design includes a nanomanipulation piezotube that allows actuation and sensing of the tip motion in three directions. In addition, a piezopatch is attached to the cantilever holder for in-situ stiffness tuning needed for manipulating large and sticky nanosamples. Design considerations and path tracking performance of the proposed manipulator are analyzed.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In