0

Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of Nanocomposites Incorporating PZT Nanowires for Enhanced Energy Storage

[+] Author Affiliations
Haixiong Tang, Yirong Lin, Clark Andrews, Henry A. Sodano

Arizona State University, Tempe, AZ

Paper No. SMASIS2010-3800, pp. 161-168; 8 pages
doi:10.1115/SMASIS2010-3800
From:
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 2
  • Philadelphia, Pennsylvania, USA, September 28–October 1, 2010
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4416-8 | eISBN: 978-0-7918-3886-0
  • Copyright © 2010 by ASME

abstract

0–3 Piezoceramic polymer composites have attracted immense attention due to the flexibility afforded by the polymer matrix and the strong electromechanical coupling and high dielectric properties of the piezoceramic filler. The majority of research on these materials has focused on the effective piezoelectric properties of the piezoceramic polymer composites. However, the high dielectric strength of the polymer combined with the high permittivity of the ceramic filler make them well suited for use as high energy density capacitors and various pulsed power applications. Current work in this area has focused on the enhancement of the dielectric properties through a variation of nanoparticle composition or surface modifications to the fillers to enhance the energy density of composites. Recently, research and micromechanics modeling have shown that the filler aspect ratio plays an important role in increasing the effective dielectric properties of the composites. Therefore, unlike prior efforts, this work will focus on the effect of filler aspect ratio on the dielectric properties of the bulk nanocomposite. Nanocomposites were synthesized using lead zirconate titanate (PZT) with two different aspect ratio (nanowires, nanorods) fillers at various volume fractions dispersed in a polyvinylidene fluoride (PVDF) matrix. It was shown that the nanocomposites containing PZT nanowires (NWs) significantly increased the energy density compared to those containing lower aspect ratio PZT nanorods (NRs). The permittivity constants of composites containing PZT NWs were higher than those with PZT NRs at the same inclusion volume fraction. The experimental results also indicated that the high frequency loss tangent of nanocomposites with PZT NWs was smaller than those of PZT NRs, demonstrating the high electrical energy storage efficiency of the PZT NW composite. The PZT NW nanocomposites showed a 77.8% increase in energy density over the PZT NR nanocomposites, under an electric field of 15 kV/mm and 50% volume fraction. Because the energy density exhibits a quadratic relationship with the applied electric field, the performance enhancement through the use of NWs is even greater at higher electric fields. These results indicate that higher aspect ratio PZT nanowires shows promising potential to improve the energy density of nanocomposites, leading the development of advanced capacitors with high energy density.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In