0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling and Analysis of Interfiber Compaction Effects in FMC Actuators for Bio-Inspired Applications

[+] Author Affiliations
Zhiye Zhang, Michael Philen

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. SMASIS2010-3842, pp. 843-851; 9 pages
doi:10.1115/SMASIS2010-3842
From:
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1
  • Philadelphia, Pennsylvania, USA, September 28–October 1, 2010
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4415-1 | eISBN: 978-0-7918-3886-0
  • Copyright © 2010 by ASME

abstract

Recently, flexible matrix composite (FMC) actuators were employed in a robotic fish for swimming [1]. The FMC actuators based on flexible matrix composites developed by Philen et al. [2] are pressure driven muscle-like actuators capable of large displacements as well as large blocking forces. The FMC actuators can also exhibit a large change in stiffness through simple valve control when the working fluid has a high bulk modulus [3, 4]. Several analytical models have been developed that capture the geometrical and material nonlinearities, the compliance of the inner liner, and entrapped air in the fluid [2, 4, 5]. But no work has been performed in capturing the fiber compaction in the composite laminate, which can have significant influence on the closed valve FMC stiffness. Therefore the objective of this research is to expand upon the previously developed models and incorporate compliance between the woven fibers.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In