0

Full Content is available to subscribers

Subscribe/Learn More  >

Precision Extrusion Deposition With Integrated Assisting Cooling to Fabricate 3D Scaffolds

[+] Author Affiliations
Qudus Hamid, Wei Sun, Selçuk Güçeri

Drexel University, Philadelphia, PA

Paper No. SMASIS2010-3804, pp. 815-821; 7 pages
doi:10.1115/SMASIS2010-3804
From:
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1
  • Philadelphia, Pennsylvania, USA, September 28–October 1, 2010
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4415-1 | eISBN: 978-0-7918-3886-0
  • Copyright © 2010 by ASME

abstract

As the field of Tissue Engineering advances to its ultimate goal of engineering a fully functional organ, there’s an increase need for enabling technologies and integrated system. Important roles in scaffold guided tissue engineering are the fabrication of extra-cellular matrices (ECM) that have the capabilities to maintain cell growth, cell attachment, and ability to form new tissues. Three-dimensional scaffolds often address multiple mechanical, biological and geometrical design constraints. With advances of technologies in the recent decades, Computer Aided Tissue Engineering (CATE) has much development in solid freeform fabrication (SFF) process, which includes but not limited to the fabrication of tissue scaffolds with precision control. Drexel University patented Precision Extrusion Deposition (PED) device uses computer aided motion and extrusion to precisely fabricate the internal and external architecture, porosity, pore size, and interconnectivity within the scaffold. The high printing resolution, precision, and controllability of the PED allows for closer mimicry of tissues and organs. Literatures have shown that some cells prefer scaffolds built from stiff material; stiff materials typically have a high melting point. Biopolymers with high melting points are difficult to manipulate to fabricate 3D scaffold. With the use of the PED and an integrated Assisting Cooling (AC) device; high melting points of biopolymer should no longer limit the fabrication of 3D scaffold. The AC device is mounted at the nozzle of the PED where the heat from the material delivery chamber of the PED has no influence on the AC fluid temperature. The AC has four cooling points, located north, south, east, and west; this allows for cooling in each direction of motion on a XY plane. AC uses but not limited to nitrogen, compressed air, and water to cool polymer filaments as it is extruded from the PED and builds scaffolds. Scaffolds fabricated from high melting point polymers that use this new integrated component to the PED should illustrate good mechanical properties, structural integrity, and precision of pore sizes and interconnectivity.

Copyright © 2010 by ASME
Topics: Cooling , Extruding

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In