0

Full Content is available to subscribers

Subscribe/Learn More  >

Computational Study of Inclusion Burst via the Proton Sponge Hypothesis

[+] Author Affiliations
Eric Freeman, Lisa Mauck Weiland

University of Pittsburgh, Pittsburgh, PA

Wilson S. Meng

Duquesne University, Pittsburgh, PA

Paper No. SMASIS2010-3756, pp. 797-805; 9 pages
doi:10.1115/SMASIS2010-3756
From:
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1
  • Philadelphia, Pennsylvania, USA, September 28–October 1, 2010
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4415-1 | eISBN: 978-0-7918-3886-0
  • Copyright © 2010 by ASME

abstract

Biological proteins embedded in either a biological or an engineered membrane will actively maintain electrochemical balance across that membrane through transport of fluid and charge. While membrane studies are often planar, in nature they typically take the form of inclusions (∼spherical). Study and ultimately manipulation of the protein transporter types and density, and interior/exterior states of these inclusions lend insight into burst mechanisms appropriate to a broad array of engineering and biological applications, such as intracellular burst release of a vaccine. To explore these phenomena the governing equations of each transporter, as well as the membrane state are established. The result is a model requiring the simultaneous solution of a stiff system of differential equations. Presented is the computational solution of this system of equations for a specific burst scenario — the hypothesis that a proton sponge may be employed to expedite intracellular burst release of a DNA vaccine is explored.

Copyright © 2010 by ASME
Topics: Protons

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In