Full Content is available to subscribers

Subscribe/Learn More  >

Design and Optimization of Hybrid Compliant Narrow-Gauge Surgical Forceps

[+] Author Affiliations
Milton E. Aguirre, Mary Frecker

The Pennsylvania State University, University Park, PA

Paper No. SMASIS2010-3732, pp. 779-788; 10 pages
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1
  • Philadelphia, Pennsylvania, USA, September 28–October 1, 2010
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4415-1 | eISBN: 978-0-7918-3886-0
  • Copyright © 2010 by ASME


This work describes a design and optimization method for developing hybrid, multi-material, compliant instruments which are expected to be useful in mini-laparoscopy and natural orifice translumenal endoscopic surgery. These two-material devices are designed specifically for Penn State’s lost mold rapid infiltration process, which is capable of fabricating hundreds of freestanding meso-scale parts in parallel. New narrow-gauge surgical procedures impose severe geometric constraints that challenge traditional compliant mechanism design methods. Since narrow-gauge constraints leave geometry optimization ineffective, new design methods are explored to improve the performance of a 1 mm diameter contact-aided compliant forceps. By considering hybrid designs, new design possibilities are enabled through material variation. The hybrid forceps has desired regions of flexibility and stiffness that can be isolated to improve tool performance. For instance, a hybrid forceps can be designed with greater flexibility in some regions to provide larger jaw openings while maintaining high stiffness in other regions to obtain large grasping forces, both vital features in a surgical forceps. Using ANSYS to model large deformation and contact, an optimization problem is formulated to maximize tool performance and to determine optimal segregation of hybrid materials considering a range of modulus ratios. Materials under consideration include nanoparticulate 3 mol% yttria partially stabilized zirconia (3YSZ) and austenitic (300 series) stainless steel. All results are compared to previously optimized homogeneous designs.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In