0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Passively Morphing Ornithopter Wing Using a Novel Compliant Spine

[+] Author Affiliations
Yashwanth Tummala, Mary Frecker

The Pennsylvania State University, University Park, PA

Aimy Wissa, James E. Hubbard, Jr.

University of Maryland/National Institute of Aerospace, Hampton, VA

Paper No. SMASIS2010-3637, pp. 703-713; 11 pages
doi:10.1115/SMASIS2010-3637
From:
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1
  • Philadelphia, Pennsylvania, USA, September 28–October 1, 2010
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4415-1 | eISBN: 978-0-7918-3886-0
  • Copyright © 2010 by ASME

abstract

A new scheme to design morphing ornithopter wings using a passive compliant spine is presented in this paper. The objective of this work is to optimize steady level flight performance of an ornithopter by passively implementing the Continuous Vortex Gait (CVG) which requires bending, twist and sweep coupling during the upstroke. An optimization problem is formulated to design a compliant spine for pre-specified bending, sweep, and twist deflections. As a first step to achieving these 3 DOF kinematics, a 1 DOF compliant spine is considered to produce a specified bending deflection during the upstroke for drag reduction while remaining stiff during the downstroke for increased lift. The effect of the relevant geometric design parameters, namely contact gap, angle, and hinge geometry, are considered and optimized to achieve the aforementioned kinematics for both single and multiple joints, which make up a compliant spine. Results presented include the spine design optimization procedure, as well as a complete analysis for a 1DOF compliant spine to illustrate the efficacy of the methodology. This compliant spine design methodology and optimization procedure will be used, in the future, to design the 3-DOF compliant spine for the passively morphing ornithopter.

Copyright © 2010 by ASME
Topics: Design , Wings

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In