0

Full Content is available to subscribers

Subscribe/Learn More  >

Chemomechanical Transduction in Hybrid Bio-Derived Conducting Polymer Actuator

[+] Author Affiliations
Vishnu Baba Sundaresan, Hao Zhang

Virginia Commonwealth University, Richmond, VA

Paper No. SMASIS2010-3630, pp. 695-701; 7 pages
doi:10.1115/SMASIS2010-3630
From:
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1
  • Philadelphia, Pennsylvania, USA, September 28–October 1, 2010
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4415-1 | eISBN: 978-0-7918-3886-0
  • Copyright © 2010 by ASME

abstract

Biological ion transport has inspired recent developments in smart materials. The work by Leo and co-workers, Bailey and co-workers has demonstrated the feasibility to design engineered systems using biological ion transporters. The biological and bio-inspired systems utilize ion transport across a barrier membrane for energy conversion. Among smart materials, ionic-active materials demonstrate electromechanical coupling using ion transport across the thickness of the polymer. Inspired by the resemblance between ionic interaction in a conducting polymer and biological membranes, this paper presents a novel actuation mechanism that uses ion transport through a biological membrane to produce shape changes in a conducting polymer actuator. This paper presents the basic architecture, the physics of transduction and analysis of extensional and bending actuation in the hybrid bio-polymer actuator. An extensional actuator of size 1 cm × 1 cm × 1 μm is theoretically found to generate 135 mPa of blocked stress. A bimorph bending actuator of dimensions 10 mm × 1 mm × 2 μm is theoretically found to produce a free-displacement of 0.5 mm using biochemical gradients.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In