0

Full Content is available to subscribers

Subscribe/Learn More  >

Broadband and Low Frequency Vibration-Based Energy Harvesting Improvement Through Magnetically Induced Frequency Up-Conversion

[+] Author Affiliations
Adam M. Wickenheiser

George Washington University, Washington, DC

Paper No. SMASIS2010-3821, pp. 611-618; 8 pages
doi:10.1115/SMASIS2010-3821
From:
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1
  • Philadelphia, Pennsylvania, USA, September 28–October 1, 2010
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4415-1 | eISBN: 978-0-7918-3886-0
  • Copyright © 2010 by ASME

abstract

In order to extract as much energy as possible from ambient vibrations, many vibration-based energy harvesters (VEHs) are designed to resonate at a specific base excitation frequency. Unfortunately, many vibration energy sources are low frequency (0.5 Hz–100 Hz), intermittent, and broadband. Thus, resonant VEHs would not be excited continuously and would require a large mass or size to tune to such a low frequency. This work presents the modeling, analysis, and experimental application of a nonlinear, magnetically excited energy harvester that exhibits efficient broadband, frequency-independent performance. This design utilizes a passive auxiliary structure that remains stationary relative to the base motion of the VEH. This device is especially effective for driving frequencies well below its fundamental frequency, thus enabling a more compact design compared to traditional resonant topologies. A mechanical model based on Euler-Bernoulli beam theory is coupled to a linear circuit and a model of the nonlinear, magnetic interaction to produce a distributed parameter magneto-electromechanical system. The results of both harmonic and broadband, stochastic simulations demonstrate multiple-order-of-magnitude power harvesting performance improvement at low driving frequencies and an insensitivity to time-varying base excitation frequency content. Furthermore, the proposed system is shown to enable more practical designs than a resonant energy harvester for the specific example of harvesting energy from walking motion.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In