0

Full Content is available to subscribers

Subscribe/Learn More  >

Novel Sensor Placement for Damage Identification in a Cracked Complex Structure With Structural Variability

[+] Author Affiliations
Sung-Kwon Hong, Bogdan I. Epureanu

University of Michigan, Ann Arbor, MI

Matthew P. Castanier

U.S. Army Tank Automotive Research, Development, and Engineering Center, Warren, MI

Paper No. SMASIS2010-3719, pp. 513-522; 10 pages
doi:10.1115/SMASIS2010-3719
From:
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1
  • Philadelphia, Pennsylvania, USA, September 28–October 1, 2010
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4415-1 | eISBN: 978-0-7918-3886-0
  • Copyright © 2010 by ASME

abstract

The focus of this work is on sensor placement for structural dynamic analysis and damage detection. In particular, novel sensor placement techniques are presented for the detection of cracks in ground vehicles and other complex structures. These techniques are designed to provide vibration characteristics for complex structures that have both cracks and structural variability (such as uncertainty in the geometry or the material properties). Such techniques are needed because structural variability affects the mode shapes of a structure, and thus the optimal sensor locations for detecting cracks are affected. Two approaches are developed and used: (a) parametric reduced order models (PROMs), and (b) bilinear mode approximation (BMA). Based on PROMs and BMA, a novel sensor placement method (which uses a derivative of the effective independent distributed vector algorithm) is used to determine the optimal sensor locations for complex structures with cracks and structural variability. The approach can also be used to estimate the crack length. The length is identified by using a few mode shapes and only a few selected measurement locations. The information from the sensors can be used to determine variations in mode shapes of the structure (between healthy and cracked states) for different crack lengths. The variation in mode shapes can then be used to identify the crack length. Numerical results are presented for a ground vehicle frame. The sensor placement method is applied first to find the optimal sensor locations for a structure with a crack and parameter variability, and then to identify the length of a crack.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In