Full Content is available to subscribers

Subscribe/Learn More  >

Optimal Parameters of an Electromagnetic Actuator for Actively Controlling the Vibration of a Flexible Rotor-Shaft System

[+] Author Affiliations
Anindya S. Das, Tarapada Roy

National Institute of Technology Rourkela, Rourkela, OR, India

Jayanta K. Dutt

Indian Institute of Technology Delhi, New Delhi, India

Paper No. SMASIS2010-3718, pp. 505-512; 8 pages
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1
  • Philadelphia, Pennsylvania, USA, September 28–October 1, 2010
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4415-1 | eISBN: 978-0-7918-3886-0
  • Copyright © 2010 by ASME


The present work deals with finding the optimum parameter of a control system that utilizes an electromagnetic actuator to actively attenuate the vibration amplitude of a flexible rotor-shaft-bearing system. The equations of motion of the rotor-shaft-bearing system is found out using the finite element method and the rotor-shaft is modelled by beam finite element taking into account of the effects like distributed inertia, flexural stiffness, gyroscopic effect and internal material damping. Optimum actuator location and the optimal set of actuator and control parameters are found out using Genetic Algorithm based approach, where the objective is to minimize response amplitude with least amount of control cost with a specified margin of stability. The control parameter found in this approach is quite efficient in achieving the desired objective.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In