Full Content is available to subscribers

Subscribe/Learn More  >

A Design Method for Shape Memory Alloy Actuators Accounting for Cyclic Shakedown With Constrained Allowable Strain

[+] Author Affiliations
WonHee Kim, Brian M. Barnes, Jonathan E. Luntz, Diann E. Brei

University of Michigan, Ann Arbor, MI

Paper No. SMASIS2010-3855, pp. 331-342; 12 pages
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1
  • Philadelphia, Pennsylvania, USA, September 28–October 1, 2010
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4415-1 | eISBN: 978-0-7918-3886-0
  • Copyright © 2010 by ASME


The high energy density actuation potential of SMA wire is tempered by conservative design guidelines set to mitigate complex factors such as functional fatigue (shakedown). Shakedown causes problems of stroke loss and interface position drift between the system and the SMA wire under higher stress levels if the wire does not undergo a pre-installation shakedown procedure. Limiting actuation strain has been reported as reducing shakedown as well as increasing fatigue life. One approach to limit actuation strain is using a mechanical strain limiter which sets a fixed Martensite strain position — useful for the development of in-device shakedown procedures which eliminates time consuming pre-installation shakedown procedures. This paper presents a new graphical design approach for SMA wire actuators which accounts for shakedown with the use of mechanical strain limiters to enable higher stress designs to maximize actuator performance. Experimental data on the effect of strain limiters along with stroke and work density contours form the basis for the new graphical design method. For each independent mechanical strain limiter, the maximum of the individual post-shakedown austenite curves at a range of applied stress are combined into a conglomerate stabilization design curve. These curves over a set of mechanical strain limiters provide steady state performance prediction for SMA actuation, effectively decoupling the shakedown material performance from design variables that affect the shakedown. The use and benefits of this new design approach are demonstrated with a common constant force actuator design example. This new design approach, which accounts for shakedown, supports design of SMA actuators at higher stresses with more economical use of material/power, and enables the utilization of strain limiters for cost saving in-device shakedown procedures.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In