0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Shape Memory Alloy Components Using Beam, Shell, and Continuum Finite Elements

[+] Author Affiliations
Darren Hartl

Texas A&M University, College Station, TX

Tyler Zimmerman, Matthew Dilligan, James Mabe, Frederick Calkins

The Boeing Company, Seattle, WA

Paper No. SMASIS2010-3833, pp. 295-305; 11 pages
doi:10.1115/SMASIS2010-3833
From:
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1
  • Philadelphia, Pennsylvania, USA, September 28–October 1, 2010
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4415-1 | eISBN: 978-0-7918-3886-0
  • Copyright © 2010 by ASME

abstract

This work discusses the increased capabilities of a three-dimensional analysis tool for shape memory alloy engineering components. As the number and complexity of proposed SMA applications increases, engineers and designers must seek out or develop more capable predictive methods. Three-dimensional models implemented in a continuum finite element analysis (FEA) framework can be applied to most SMA component geometries. However, such methods may require fine meshes in 3-D space, resulting in many degrees of freedom and potentially long analysis times. On the other hand, constitutive models implemented in one dimension can be simple and fast, but are restricted to a limited class of problems for which such reductions are appropriate (e.g., rods and beams). More recently, engineers have begun investigating more complex SMA bending components for which 2-D shell elements might provide a computationally efficient FEA discretization. Here we consider a single modeling tool (a material subroutine) that combines 1-D, 2-D, and 3-D implementations for use in a general FEA framework. As an example analysis case, we consider an SMA bending element that has been adhesively bonded to a carbon fiber-reinforced polymer (CFRP) laminate and is subjected to thermally-induced actuation. The active SMA and passive composite components are bonded in a pre-stressed configuration such that the elastic laminate provides a variable restoring force to the SMA during transformation, resulting in repeatable actuation cycles. This two-part bonded configuration is analyzed using different types of finite elements (1-D beam, 2-D shell, and full 3-D continuum elements). The constitutive behavior of the shape memory alloy is defined using an established three-dimensional model based on continuum thermodynamics and motivated by the methods of classical plasticity. A user material subroutine (UMAT) in an Abaqus Unified FEA framework is used to implement the model. The methodology for capturing 1-D, 2-D, and 3-D thermomechanical response in a single such UMAT is described. The run times of the various analyses are compared, and the relative accuracies of the results are discussed.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In