0

Full Content is available to subscribers

Subscribe/Learn More  >

The Chemo-Electro-Mechanical Behavior of the pH Sensitive Hydrogels in Transient Condition

[+] Author Affiliations
Kamlesh J. Suthar, Derrick C. Mancini

Argonne National Laboratory, Argonne, IL

Muralidhar K. Ghantasala

Western Michigan University, Kalamazoo, MI

Paper No. SMASIS2010-3762, pp. 203-210; 8 pages
doi:10.1115/SMASIS2010-3762
From:
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1
  • Philadelphia, Pennsylvania, USA, September 28–October 1, 2010
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4415-1 | eISBN: 978-0-7918-3886-0
  • Copyright © 2010 by ASME

abstract

Hydrogels are 3-D network polymeric materials that exhibit a phase-transition due to a change in their environment so that the response causes the hydrogel to swell or shrink. The changes in the solvent pH cause the hydrogel to swell or shrink, which is exploited for designing a drug delivery system. The time taken for drug uptake or delivery is an important aspect in these applications. The development of such systems require thorough understanding of the kinetic behavior of hydrogel swelling. We report the results of our research effort to model the time-dependent behavior using the finite element analysis. The hydrogel response is modeled using three partial differential equations in which two are nonlinear and third equation uses nonlinear material constants. Solving all three nonlinear equations using the finite element method for transient condition is a significant challenge. Our model is implemented using the generic finite element software COMSOL and the method can be used with any software having similar capabilities. We discuss the simulation of phase-transitions in transient conditions emphasizing the response to change in the solvent pH. The simulation was carried out on hydrogels with diameters from 200 μm to 500 μm while varying the solvent pH from 3 to 6. The results are compared with the published experimental data. A major achievement of this work is that the transient analysis is carried out in 2D, while the most reported literature are confined to one-dimensional analysis.

Copyright © 2010 by ASME
Topics: Hydrogels

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In