0

Full Content is available to subscribers

Subscribe/Learn More  >

Using an In-Situ Micromirror to Assist the Measurement of In-Plane Vibration of Microstructures

[+] Author Affiliations
Jacky Chow, Yong-Jun Lai

Queen’s University, Kingston, ON, Canada

Paper No. DETC2010-28299, pp. 753-758; 6 pages
doi:10.1115/DETC2010-28299
From:
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 12th International Conference on Advanced Vehicle and Tire Technologies; 4th International Conference on Micro- and Nanosystems
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4412-0 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME

abstract

Heterodyne laser interferometry is an optical technique often used to measure displacement of surfaces along the wave vector direction of a measurement laser. For common microelectromechanical system (MEMS) testing setup, such laser wave vector is perpendicular to the substrate which the micromachined devices stand on. Therefore, this technique can only be used to characterize dynamics of the micro devices in the direction perpendicular to their substrate (out-of-plane motions) with the classic setup and it is not able to measure any motion that is parallel to the substrate (in-plane motions). In this study, in-situ micromirrors are fabricated onto a microstructure that is near the device to be measured by using a focused ion beam system. The micromirrors have a slant angle of approximate 45 degree to horizontal surface (or their substrate). By using the post-fabricated in-situ micromirror, the measurement laser of a heterodyne interferometer can be directed into horizontal plane which enables characterization of in-plane motions for micromechanical. To experimentally demonstrate the technique a micro cantilever fabricated using MetalMUMPs is used. The micro cantilever is excited by inplane electrostatic force. The results confirm the effectiveness of the method by the fact that the magnitude of the measured in-plane signal is increased by more than ten folds.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In