0

Full Content is available to subscribers

Subscribe/Learn More  >

Fingertip Force/Torque Sensor With High Isotropy and Sensitivity for Underwater Manipulation

[+] Author Affiliations
Qiaokang Liang

Chinese Academy of Sciences; University of Science and Technology of China, Hefei, Anhui, China

Dan Zhang, Zhongzhe Chi

University of Ontario Institute of Technology, Oshawa, ON, Canada

Yunjian Ge

University of Science and Technology of China, Hefei, Anhui, China

Paper No. DETC2010-28280, pp. 743-752; 10 pages
doi:10.1115/DETC2010-28280
From:
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 12th International Conference on Advanced Vehicle and Tire Technologies; 4th International Conference on Micro- and Nanosystems
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4412-0 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME

abstract

Control strategies for robotic manipulators in underwater applications are still immature compared with the strategies of the manipulators on land. Part of the reason is that there is no precise force/torque information, which is essential to the close-loop control. Unlike the sensor applied on the ground, the sensors for underwater applications have to endure the high-pressure, low-temperature and corrosive environment. Therefore, aimed at obtaining the accurate interaction force/torque between underwater robot manipulators and objects, a novel four-dimensional fingertip force sensor is presented based on e-type membrane for underwater robot manipulators. A seal technique is described. Experimental results demonstrate the design could detect force/torque with good linearity, high sensitivity and weak couplings.

Copyright © 2010 by ASME
Topics: Force , Torque , Sensors , Isotropy

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In