0

Full Content is available to subscribers

Subscribe/Learn More  >

Comprehensive Reduced-Order Models of Electrostatically Actuated MEMS Switches and Their Dynamics Including Impact and Bounce

[+] Author Affiliations
Michael G. Snow, Anil K. Bajaj

Purdue University, West Lafayette, IN

Paper No. DETC2010-28590, pp. 579-588; 10 pages
doi:10.1115/DETC2010-28590
From:
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 12th International Conference on Advanced Vehicle and Tire Technologies; 4th International Conference on Micro- and Nanosystems
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4412-0 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME

abstract

As MEMS technology develops it is becoming better understood that MEMS designers must account for the large uncertainties characteristic of the relevant manufacturing processes. Uncertainty quantification tasks the designer with evaluating many different possible outcomes from the manufacturing process which creates a demand for models that are accurate and comprehensive, yet fast to evaluate. This work presents a comprehensive reduced-order model of electrostatically actuated switches incorporating a range of effects that are typically included only in FE modeling codes. Specifically, the model accounts for variable electrode geometry, stretching of centerline or large displacement effects, fringing field, squeeze film and rarefied gas damping, and allows for elastic contact with the dielectric substrate. Individual compact models for each of these effects are taken from literature and included in the model for the system. The dielectric substrate is modeled as an elastic foundation. The resulting partial differential equation for the switch modeled as a beam is discritized via a Galerkin method into ordinary differential equations for modal amplitudes. The Galerkin method uses the linear un-damped mode shapes of the beam to approximate the solution. Both cantilever and fixed-fixed type switches are analyzed. Static equilibrium solutions as a function of the applied voltage are developed along with their stability. Static pull-in voltages, first time of switch closure, and voltage for lift-off are studied with the model. To capture the contact dynamics, the contact condition is evaluated with the substrate divided into a large number of elements and the contact force is projected on to the beam basis functions. In the case of cantilever geometry and slow voltage variations, three stable regimes of contact configuration and hysteresis between them are demonstrated.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In