0

Full Content is available to subscribers

Subscribe/Learn More  >

Localized Material Properties Through Nonlinear Dynamics Based Atomic Force Microscopy

[+] Author Affiliations
Wei Huang, Andrew J. Dick

Rice University, Houston, TX

Paper No. DETC2010-29022, pp. 507-516; 10 pages
doi:10.1115/DETC2010-29022
From:
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 12th International Conference on Advanced Vehicle and Tire Technologies; 4th International Conference on Micro- and Nanosystems
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4412-0 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME

abstract

Due to the intrinsic nonlinearity of the tip-sample interaction forces that are utilized in atomic force microscopy, nonlinear behavior can be observed even under the most ‘ideal’ conditions. While the standard operating modes of the atomic force microscope (AFM) have been developed to minimize this nonlinear behavior, the authors’ work focuses on utilizing a nonlinear response of the AFM probe associated with off-resonance excitation in order to measure local material properties of the sample. Previously, period-doubling bifurcations were identified and studied for an off-resonance excitation condition of two-and-a-half times the fundamental frequency. A relationship was identified between the characteristics of the qualitative response transition and the properties of the probe and sample. For a given probe, the critical separation distance where the period-doubling bifurcation occurs is influenced by the local modulus properties of the sample. This paper details the current effort studying this relationship with the goal of developing a new AFM operation mode for obtaining localized material properties by scanning the sample. The influence of different system parameters on this relationship is studied and preliminary simulation results are presented for a simple scanning process.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In