0

Full Content is available to subscribers

Subscribe/Learn More  >

The Influence of Post Angioplasty Stent Implant Profile on Arterial Wall Stress

[+] Author Affiliations
Mircea Teodorescu

Cranfield University, Bedford, UK

Moshe Brand

Ariel University Center of Samaria, Ariel, Israel

Jacob Rosen

University of California at Santa Cruz, Santa Cruz, CA

Homer Rahnejat

Loughborough University, Loughborough, UK

Paper No. DETC2010-29233, pp. 413-420; 8 pages
doi:10.1115/DETC2010-29233
From:
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 12th International Conference on Advanced Vehicle and Tire Technologies; 4th International Conference on Micro- and Nanosystems
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4412-0 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME

abstract

One of the main causes for post angioplasty arterial restenosis is the excessive stress induced in the arterial wall during and after the medical intervention. The closed stent is introduced in the artery wrapped around the deflated balloon catheter and is expanded in the final position by inflating the balloon. Unfortunately, this process also stretches the arterial wall. Additionally, for the stent to be successful, its diameter must be slightly larger than the diameter of the inflated artery. The stent is usually a dense mesh of interconnected beams. Therefore, it is often considered that it applies a constant pressure to the artery / stent interface. However, in reality each beam individually presses against the innermost layer of the artery (intima). The current study proposes a model, which predicts the arterial wall subsurface stress field due to individual stent beams. It was found that the local shape of the contact (beam cross section) plays an important role close to the stent / intima contact. Sharper edged cross sections (e.g. square) promote higher stresses. It was observed that during restenosis a new inner layer (neointima) is formed, significantly reducing the stent efficiency. This could be related to local stress concentrations due to the choice of stent beam profile.

Copyright © 2010 by ASME
Topics: Stress , stents

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In