Full Content is available to subscribers

Subscribe/Learn More  >

Novel Transmissibility Shaping Control for Regenerative Vehicle Suspension Systems

[+] Author Affiliations
Xubin Song

Eaton Corporation, Southfield, MI

Dongpu Cao

University of Waterloo, Waterloo, ON, Canada

Paper No. DETC2010-28128, pp. 287-295; 9 pages
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 12th International Conference on Advanced Vehicle and Tire Technologies; 4th International Conference on Micro- and Nanosystems
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4412-0 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME


This research proposes a novel transmissibility shaping control (T-shaping Control) method and explores its potential performance benefits for active vehicle suspension systems with energy-regeneration [1]. The proposed model-free T-shaping control integrates a range of sub-strategies based on the frequency information extracted from measured dynamic signals. Each strategy is designed to function dominantly in a certain frequency range to achieve a desirable (or optimal) transmissibility of vehicle responses for enhanced vehicle dynamic performance and safety. Different sub-strategies employed for different frequency ranges consist of stiffness control, skyhook control, groundhook control, and variable damping. In order to demonstrate the effectiveness of this proposed control method, a novel tunable compressible fluid strut (CFS) integrating with digital displacement pump motor (DDPM) is used to form an energy-regenerative controllable vehicle suspension system [2–4]. Two vehicle models, including quarter-car and full-vehicle models, are employed to investigate the dynamic performance of a road vehicle with the proposed T-shaping control and novel regenerative suspension system. The results demonstrate the effectiveness and considerable performance enhancements of the proposed novel T-shaping control applied to the novel CFS suspension system in a very energy-efficient manner.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In