Full Content is available to subscribers

Subscribe/Learn More  >

A Computational Framework for Real-Time Unmanned Sea Surface Vehicle Motion Simulation

[+] Author Affiliations
Atul Thakur, Satyandra K. Gupta

University of Maryland, College Park, College Park, MD

Paper No. DETC2010-28526, pp. 51-61; 11 pages
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 30th Computers and Information in Engineering Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4411-3 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME


Unmanned Sea Surface Vehicle (USSV) motion simulation in time domain is an important component of USSV design and operation. This capability is needed for hull design, operator training, controller synthesis and testing. Many applications such as simulators for operator training require real-time performance. Traditional approaches based on strip theory, although fast, abstract hulls into slender bodies, making the simulation results insensitive to changes in geometry. Computational fluid dynamics (CFD) based approaches are accurate but very slow. Potential flow based approaches are sensitive to hull geometry and take lesser amount of time than CFD based approaches. The motion simulation using potential flow theory involves following four main operations: (1) computation of dynamic pressure head due to fluid flow around the hull under the ocean wave, (2) computation of wet surface, (3) computing surface integral of dynamic pressure head over wet surface, and (4) solving the rigid body dynamics equation. First three operations depend upon the boat geometry complexity and need to be performed at each time step, making the simulation run very slow. In this paper, we investigate the problem of model simplification for real-time simulation of USSV model in time domain using potential flow theory, with arbitrary geometry under ocean waves with inviscid and irrotational flow. Using clustering based simplification scheme and parallel computing we obtained real time simulation performance.

Copyright © 2010 by ASME
Topics: Motion , Simulation , Vehicles , Seas



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In