Full Content is available to subscribers

Subscribe/Learn More  >

Optimal Synthesis of a Planar Reactionless Three-Degree-of-Freedom Parallel Mechanism

[+] Author Affiliations
Jean-Francois Collard, Clément Gosselin

Université Laval, Quebec, QC, Canada

Paper No. DETC2010-28861, pp. 1599-1608; 10 pages
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4410-6 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME


A reactionless mechanism is one in which no reaction forces nor moments are transmitted to the base for any arbitrary motion. This interesting property often requires to increase the total mass and the moments of inertia, leading to reduced dynamical performances. Therefore, this paper presents an optimization approach to synthesize and improve the dynamical performance of a reactionless three-degree-of-freedom planar mechanism. The three legs of this original mechanism are composed of reactionless four-bar mechanisms dynamically balanced with only one counter-rotation at the base. The optimization variables are the geometric and inertial parameters, while the goal is to minimize the global moment of inertia of each leg. This will reduce the power consumption of the three actuators and increase the agility. To meet physical and realistic requirements, the optimization problem is also constrained with bounds on the parameters, with the reachability of a given workspace and with a given range on a kinematic sensitivity index. Since different initial guesses of the optimization lead to similar objective results, it is proposed to search for several local solutions (morphologies) in the design space. The final choice among these solutions is made using additional design criteria based on the sensitivity in terms of dynamic balancing and power consumption with respect to the design parameters.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In