Full Content is available to subscribers

Subscribe/Learn More  >

Fuzzy Control of Vertical Jumping With a Planar Biped

[+] Author Affiliations
Matthew Hester

Moog Inc., Salt Lake City, UT

Patrick M. Wensing, David E. Orin

The Ohio State University, Columbus, OH

James P. Schmiedeler

University of Notre Dame, Notre Dame, IN

Paper No. DETC2010-28857, pp. 1589-1597; 9 pages
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4410-6 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME


This paper develops a control strategy to produce vertical jumps in a planar biped robot as a preliminary investigation into dynamic maneuvers. The control strategy was broken into two functional levels to separately solve the problems of coordination and execution of the jump maneuver. A high-level fuzzy controller addresses the complexities that arise from the system’s hybrid nonlinear dynamics and series-elastic actuators embedded in the articulated legs. A novel fuzzy training scheme is used because the system is too complex for traditional training methods. A low-level controller is based on a state machine that sequences the legs through the phases of a jump. The modular nature of the control strategy allows quick adaptation to other dynamic maneuvers. Validity is demonstrated through dynamic simulation and testing with the experimental biped KURMET which result in stable successive jumps over a range of heights.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In