0

Full Content is available to subscribers

Subscribe/Learn More  >

Geometric, Spatial Path Tracking Using Non-Redundant Manipulators via Speed-Ratio Control

[+] Author Affiliations
Satyajit Ambike

The Ohio State University, Columbus, OH

James P. Schmiedeler, Michael M. Stanišić

University of Notre Dame, Notre Dame, IN

Paper No. DETC2010-28061, pp. 1231-1240; 10 pages
doi:10.1115/DETC2010-28061
From:
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4410-6 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME

abstract

Path tracking can be accomplished by separating the control of the desired trajectory geometry and the control of the path variable. Existing methods accomplish tracking of up to third-order geometric properties of planar paths and up to second-order properties of spatial paths using non-redundant manipulators, but only in special cases. This paper presents a novel methodology that enables the geometric tracking of a desired planar or spatial path to any order with any non-redundant regional manipulator. The governing first-order coordination equation for a spatial path-tracking problem is developed, the repeated differentiation of which generates the coordination equation of the desired order. In contrast to previous work, the equations are developed in a fixed global frame rather than a configuration-dependent canonical frame, providing a significant practical advantage. The equations are shown to be linear, and therefore, computationally efficient. As an example, the results are applied to a spatial 3-revolute mechanism that tracks a spatial path. Spatial, rigid-body guidance is achieved by applying the technique to three points on the end-effector of a six degree-of-freedom robot. A spatial 6-revolute robot is used as an illustration.

Copyright © 2010 by ASME
Topics: Manipulators

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In