Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of a New Form of Intrinsically Automatic Continuously Variable Transmission

[+] Author Affiliations
Timothy Cyders, Robert L. Williams, II

Ohio University, Athens, OH

Paper No. DETC2010-28729, pp. 1149-1156; 8 pages
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4410-6 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME


Effective continuously variable transmission (CVT) designs have been sought after for many years as their integration into many different mechanical systems can give many advantages over a discrete transmission system. Currently, CVTs are becoming popular for applications from automotive power transmission to wind power generation. Most CVT technologies, however, are friction- or hydraulic-based designs limited by both performance and system characteristics. This paper will evaluate a new, patented form of purely mechanical, intrinsically automatic CVT which is not based on belts, pulleys, gears or hydraulics. This new transmission is based on a deformable four-bar design incorporating a one-way clutch for positive displacement of the output. As torque demand on the system output is varied, the output’s displacement varies inversely to maintain a constant peak torque on the input shaft. The end result of this behavior is a possible instantaneous variation of speed ratio over an extreme range with a lightweight, simple mechanical design. This paper provides an analysis of the mechanism and its performance, as well as simulation results incorporating real-world measurement of system output into several different mechanical applications: a human-powered vehicle, an automobile and a centrifugal pump.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In