Full Content is available to subscribers

Subscribe/Learn More  >

Multiple-Criteria Kinematic Optimization for the Design of Spherical Serial Mechanisms Using Genetic Algorithms

[+] Author Affiliations
Xiaoli Zhang, Carl A. Nelson

University of Nebraska-Lincoln, Lincoln, NE

Paper No. DETC2010-28368, pp. 819-827; 9 pages
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4410-6 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME


A new kinematic design methodology is presented for optimization of spherical serial mechanisms. This method integrates multiple criteria (workspace, manipulability, and size) linearly in one objective function. All these criteria are optimized simultaneously to lead to a more realistic solution. By changing the priorities of each criterion, different sets of desirable kinematic performance can be expressed. The global manipulability and the uniformity of manipulability over the workspace are combined in a single index to improve the synthesis results. The optimization result for a spherical bevel-geared mechanism using a genetic algorithm demonstrated that the proposed method effectively improves the quality of the optimum solution and provides insight into the workings of the mechanism. In addition, this flexible and adaptable methodology may also be extended for use in general optimization for linkage synthesis.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In