Full Content is available to subscribers

Subscribe/Learn More  >

Realizing Orthogonal Motions With Wire Flexures Connected in Parallel

[+] Author Affiliations
Hai-Jun Su, Hafez Tari

University of Maryland, Baltimore County, Baltimore, MD

Paper No. DETC2010-28517, pp. 503-512; 10 pages
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4410-6 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME


In this paper, we study the synthesis of wire flexures to achieve orthogonal motion by using a recently developed screw theory based approach. For a given desired mobility pattern, our goal is to find a system of wire flexures that are simply connected in parallel between the functional stage and the ground. It has been shown that a wire flexure is essentially a pure force or a line screw. An n dof motion space (allowable motion) is realizable if its reciprocal constraint space can be spanned by 6 – n line screws or forces. We first enumerate all possible one to five degree of motion spaces that are formed by motions along the coordinate axes attached on the functional stage. For each of these 34 motion spaces, we apply the screw theory approach to find its reciprocal force space as well as its rank. We conclude that 18 of them are realizable, 4 are realizable only when their pitches have opposite signs and 12 are not realizable. For each of these 34 cases, we provide an example showing the maximum number of independent wire flexures.

Copyright © 2010 by ASME
Topics: Motion , Wire



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In