0

Full Content is available to subscribers

Subscribe/Learn More  >

Design and Optimization of a Spatial Hybrid Motion System

[+] Author Affiliations
P. R. Ouyang, Steven Cargnello

Ryerson University, Toronto, ON, Canada

Paper No. DETC2010-28186, pp. 401-408; 8 pages
doi:10.1115/DETC2010-28186
From:
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4410-6 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME

abstract

In this paper, a spatial hybrid motion system is developed that integrates two types of motions through one compliant mechanism: a macro motion driven by a DC servomotor and a micro motion driven by a PZT actuator. A unique feature of the developed hybrid motion system is the elimination of interaction between the macro motion and micro motion. Three issues are addressed in this study: (1) the design principle and implementation of the hybrid motion system; (2) the kinematic analysis and dynamic analysis; and (3) the optimization design of the hybrid motion system. For the micro motion, the five-bar topology of a mechanical amplifier is used to increase amplifying ratio and improve dynamic performance of the system. Finite element analysis results verify the design principle of the parallel architecture for the hybrid motion system.

Copyright © 2010 by ASME
Topics: Motion , Design , Optimization

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In