0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Large Range XY Nanopositioning System

[+] Author Affiliations
Shorya Awtar, Gaurav Parmar

University of Michigan, Ann Arbor, MI

Paper No. DETC2010-28185, pp. 387-399; 13 pages
doi:10.1115/DETC2010-28185
From:
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4410-6 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME

abstract

Achieving large motion range (> 1 mm) along with nanometric motion quality (< 10 nm), simultaneously, has been a key challenge in nanopositioning systems. Practical limitations associated with the individual physical components (flexure bearing, actuators, and sensors) and their integration, particularly in the case of multi-axis systems, have restricted the range of current nanopositioning systems to about 100 μm. This paper presents a novel physical system layout, with a parallel-kinematic XY flexure mechanism at its heart, that provides a high degree of decoupling between the two motion axes by avoiding geometric over-constraints, provides actuator isolation that allows the use of large-stroke single-axis actuators, and enables a complementary end-point sensing scheme that employs commonly available sensors. These attributes help achieve an unprecedented 10 mm × 10 mm motion range in the proposed nanopositioning system. Having overcome the physical system design challenges, a dynamic model of proposed nanopositioning system is created and verified via system identification methods. In particular, dynamic non-linearities associated with the large displacements of the flexure mechanism and resulting controls challenges are identified. The physical system is fabricated, assembled, and tested to validate its simultaneous large range and nanometric motion capabilities. Preliminary closed-loop test results, which highlight the potential of this new design configuration, are presented.

Copyright © 2010 by ASME
Topics: Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In