Full Content is available to subscribers

Subscribe/Learn More  >

On Designing Structured Soft Covers for Robotic Limbs With Predetermined Compliance

[+] Author Affiliations
Giovanni Berselli, Marco Piccinini, Gabriele Vassura

University of Bologna, Bologna, Italy

Paper No. DETC2010-28965, pp. 165-174; 10 pages
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4410-6 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME


In order to overcome the limits due to the fact that homogeneous layers of soft material placed over robotic limbs behave differently with respect to biological models, this paper suggests the adoption of soft covers (pads) with differentiated structure. In particular, it is proposed to divide the allowable pad thickness into two layers: a continuous external layer (skin) and a discontinuous internal layer, so that the overall stiffness can be adjusted by properly shaping the discontinuous layer. The methodology adopted for designing the internal layer is composed of two steps. Firstly, the cover surface is conceptually split into finite elementary triangular sub-regions. Secondly, the internal layer of each triangular element is designed in order to replicate the shape of the non-linear compression law which is typical of endoskeletal structures covered by pulpy tissues. A series of symmetrically-disposed inclined micro-beams is used for the purpose. Once the compression law of each triangular element is known, the overall pad compliance can be modulated by correctly choosing the number and size of the elements composing the pad. Equipment and results of a combined experimental and numerical analysis (FEM) are presented. The results confirm that the proposed concept can be an effective solution when designing soft covers whose behavior need to match the compliance of the biological counterpart. As an example, artificial pads which mimic the human finger behavior are presented.

Copyright © 2010 by ASME
Topics: Design , Robotics



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In