0

Full Content is available to subscribers

Subscribe/Learn More  >

The Design of an Intelligent Socially Assistive Robot for Person-Centered Cognitive Interventions

[+] Author Affiliations
Jeanie Chan, Goldie Nejat

University of Toronto, Toronto, ON, Canada

Paper No. DETC2010-28681, pp. 91-99; 9 pages
doi:10.1115/DETC2010-28681
From:
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4410-6 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME

abstract

Recently, there has been a growing body of research that supports the effectiveness of using non-pharmacological cognitive and social training interventions to reduce the decline of or improve brain functioning in individuals suffering from cognitive impairments. However, implementing and sustaining such interventions on a long-term basis is difficult as they require considerable resources and people, and can be very time-consuming for healthcare staff. The objectives of our research are to validate the effectiveness of these training interventions and make them more accessible to healthcare professionals through the aid of robotic assistants. Our work focuses on designing a human-like socially assistive robot, Brian 2.0, with abilities to recognize and identify human affective intent to determine its own appropriate emotion-based behavior while engaging in natural and believable social interactions with people. In this paper, we present the design of a novel human-robot interaction (HRI) control architecture for Brian 2.0 that allows the robot to provide social and cognitive stimulation in person-centered cognitive interventions. Namely, the novel control architecture is designed to allow a robot to act as a social motivator by encouraging, congratulating and assisting a person during the course of a cognitively stimulating activity. Preliminary experiments validate the robot’s ability to provide assistive interactions during a HRI-based person-directed activity.

Copyright © 2010 by ASME
Topics: Robots , Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In