Full Content is available to subscribers

Subscribe/Learn More  >

A New 3D Kinematic Model for the Passive Motion of the Tibia-Fibula-Ankle Complex

[+] Author Affiliations
Benedetta Baldisserri, Vincenzo Parenti Castelli

University of Bologna, Bologna, Italy

Paper No. DETC2010-28500, pp. 47-55; 9 pages
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4410-6 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME


A great number of kinematic, kinetostatic and dynamic models of human diarthrodial joints, such as the hip, the knee and the ankle, have been presented in the literature. On the contrary, comprehensive models of the lower limb are lacking and often oversimplify its anatomical structures by considering only 2D motion. This paper will focus on the 3D kinematic model of the articulation that involves four bones: the tibia, fibula, talus and calcaneus. In particular, a new spatial equivalent mechanism with one degree of freedom is proposed for the passive motion simulation of this anatomical complex. The geometry of the mechanism is based on the main anatomical structures of the complex, namely the talus, the tibia and the fibula bones at their interface, on the main ligaments of the ankle joint, and on the interosseus membrane of the leg. An iterative refinement process is presented, that provides the optimal geometry of the mechanism which allows the best fitting of simulation versus measurement data. Simulation results show the efficiency of the proposed mechanism that is believed to play an important role for future developments of models of the whole human lower limb.

Copyright © 2010 by ASME
Topics: Motion



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In