0

Full Content is available to subscribers

Subscribe/Learn More  >

Fastener Pattern Optimization of an Eccentrically Loaded Multi-Fastener Connection

[+] Author Affiliations
Matthew Watkins, Mark Jakiela

Washington University in St. Louis, St. Louis, MO

Paper No. DETC2010-28891, pp. 1209-1218; 10 pages
doi:10.1115/DETC2010-28891
From:
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 36th Design Automation Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4409-0 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME

abstract

This paper presents the use of a genetic algorithm in conjunction with geometric nonlinear finite element analysis to optimize the fastener pattern and lug location in an eccentrically loaded multi-fastener connection. No frictional resistance to shear was included in the model, as the connection transmitted shear loads into four dowel fasteners through bearing-type contact without fastener preload. With the goal of reducing the maximum von Mises stress in the connection to improve fatigue life, the location of the lug hole and four fastener holes were optimized to achieve 55% less maximum stress than a similar optimization using the traditional instantaneous center of rotation method. Since the maximum stress concentration was located at the edge of a fastener hole where fatigue cracks could be a concern, reduction of this quantity lowers the probability of crack growth for both bearing-type and slip-resistant connections. It was also found that the location of the maximum von Mises stress concentration jumped from the fastener region to the lug as the applied force angle was decreased below 45 degrees, thus the fastener pattern could not be optimized for lower angles.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In