0

Full Content is available to subscribers

Subscribe/Learn More  >

Updating Predictive Models: Calibration, Bias Correction and Identifiability

[+] Author Affiliations
Paul D. Arendt, Wei Chen, Daniel W. Apley

Northwestern University, Evanston, IL

Paper No. DETC2010-28828, pp. 1089-1098; 10 pages
doi:10.1115/DETC2010-28828
From:
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 36th Design Automation Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4409-0 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME

abstract

Model updating, which utilizes mathematical means to combine model simulations with physical observations for improving model predictions, has been viewed as an integral part of a model validation process. While calibration is often used to “tune” uncertain model parameters, bias-correction has been used to capture model inadequacy due to a lack of knowledge of the physics of a problem. While both sources of uncertainty co-exist, these two techniques are often implemented separately in model updating. This paper examines existing approaches to model updating and presents a modular Bayesian approach as a comprehensive framework that accounts for many sources of uncertainty in a typical model updating process and provides stochastic predictions for the purpose of design. In addition to the uncertainty in the computer model parameters and the computer model itself, this framework accounts for the experimental uncertainty and the uncertainty due to the lack of data in both computer simulations and physical experiments using the Gaussian process model. Several challenges are apparent in the implementation of the modular Bayesian approach. We argue that distinguishing between uncertain model parameters (calibration) and systematic inadequacies (bias correction) is often quite challenging due to an identifiability issue. We present several explanations and examples of this issue and bring up the needs of future research in distinguishing between the two sources of uncertainty.

Copyright © 2010 by ASME
Topics: Calibration

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In