0

Full Content is available to subscribers

Subscribe/Learn More  >

Sampling-Based Stochastic Sensitivity Analysis Using Score Functions for RBDO Problems With Correlated Random Variables

[+] Author Affiliations
Ikjin Lee, Kyung K. Choi, Yoojeong Noh, Liang Zhao

The University of Iowa, Iowa City, IA

David Gorsich

U.S. Army RDECOM/TARDEC, Warren, MI

Paper No. DETC2010-28591, pp. 1055-1064; 10 pages
doi:10.1115/DETC2010-28591
From:
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 36th Design Automation Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4409-0 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME

abstract

This study presents a methodology for computing stochastic sensitivities with respect to the design variables, which are the mean values of the input correlated random variables. Assuming that an accurate surrogate model is available, the proposed method calculates the component reliability, system reliability, or statistical moments and their sensitivities by applying Monte Carlo simulation (MCS) to the accurate surrogate model. Since the surrogate model is used, the computational cost for the stochastic sensitivity analysis is negligible. The copula is used to model the joint distribution of the correlated input random variables, and the score function is used to derive the stochastic sensitivities of reliability or statistical moments for the correlated random variables. An important merit of the proposed method is that it does not require the gradients of performance functions, which are known to be erroneous when obtained from the surrogate model, or the transformation from X-space to U-space for reliability analysis. Since no transformation is required and the reliability or statistical moment is calculated in X-space, there is no approximation or restriction in calculating the sensitivities of the reliability or statistical moment. Numerical results indicate that the proposed method can estimate the sensitivities of the reliability or statistical moments very accurately, even when the input random variables are correlated.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In