0

Full Content is available to subscribers

Subscribe/Learn More  >

System RBDO With Correlated Variables Using Probabilistic Re-Analysis and Local Metamodels

[+] Author Affiliations
Ramon C. Kuczera

GKN Driveline, Auburn Hills, MI

Zissimos P. Mourelatos

Oakland University, Rochester, MI

Efstratios Nikolaidis

University of Toledo, Toledo, OH

Paper No. DETC2010-28130, pp. 913-926; 14 pages
doi:10.1115/DETC2010-28130
From:
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 36th Design Automation Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4409-0 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME

abstract

A simulation-based, system reliability-based design optimization (RBDO) method is presented that can handle problems with multiple failure regions and correlated random variables. Copulas are used to represent dependence between random variables. The method uses a Probabilistic Re-Analysis (PRRA) approach in conjunction with a sequential trust-region optimization approach and local metamodels covering each trust region. PRRA calculates very efficiently the system reliability of a design by performing a single Monte Carlo (MC) simulation per trust region. Although PRRA is based on MC simulation, it calculates “smooth” sensitivity derivatives, allowing the use of a gradient-based optimizer. The PRRA method is based on importance sampling. One requirement for providing accurate results is that the support of the sampling PDF must contain the support of the joint PDF of the input random variables. The trust-region optimization approach satisfies this requirement. Local metamodels are constructed sequentially for each trust region taking advantage of the potential overlap of the trust regions. The metamodels are used to determine the value of the indicator function in MC simulation. An example with correlated input random variables demonstrates the accuracy and efficiency of the proposed RBDO method.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In