Full Content is available to subscribers

Subscribe/Learn More  >

User Interface Design for Interactive Product Family Analysis and Variants Derivation

[+] Author Affiliations
Soon Chong Johnson Lim, Ying Liu

The Hong Kong Polytechnic University, Hong Kong, China

Han Tong Loh

National University of Singapore, Singapore

Paper No. DETC2010-28390, pp. 869-878; 10 pages
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 36th Design Automation Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4409-0 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME


Product family design (PFD) is one of the commonly adopted strategies of product realization in mass customization paradigm. Among the current product family modeling approaches, ontology based modeling has been identified as a promising approach. Previously, we have studied the feasibility of using a semantically annotated multi-facet product family ontology in performing product analysis and variant derivation in the PFD domain. However, the visualization aspects of the ontology are important to assist product designers and engineers to gain insights and benefit from the ever-increasing information from the ontology, e.g. dimension, assembly or configuration wise. From the previous literature, we observe that there are limited usage of visualization and interaction in PFD for tasks such as product analysis and variant derivation. The current hierarchy based representations are limited in displaying ontological relationships and tasks such as commonality analysis seldom make use of visualization to foster better understanding of component similarity. In this study, we report our efforts in assisting product family analysis and variant derivation through visualization and user interface (UI) which enables interactive PFD. Design considerations for our visualization and user interaction design are discussed. By using a multi-touch UI, we discuss on how our UI is able to enable users to better perform product analysis and variant derivation based on the aforementioned ontology in an interactive, intuitive and intelligent manner. We finally conclude this paper with some indications for future works.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In