0

Full Content is available to subscribers

Subscribe/Learn More  >

Multi-Objective Optimization in Industrial Robotic Cell Design

[+] Author Affiliations
Xiaolong Feng, Hans Andersson

ABB Corporate Research, Västerås, Sweden

Daniel Wäppling

ABB Robotics, Västerås, Sweden

Johan Ölvander, Mehdi Tarkian

Linköping University, Linköping, Sweden

Paper No. DETC2010-28488, pp. 815-823; 9 pages
doi:10.1115/DETC2010-28488
From:
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 36th Design Automation Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4409-0 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME

abstract

It has become a common practice to conduct simulation-based design of industrial robotic cells, where Mechatronic system model of an industrial robot is used to accurately predict robot performance characteristics like cycle time, critical component lifetime, and energy efficiency. However, current robot programming systems do not usually provide functionality for finding the optimal design of robotic cells. Robot cell designers therefore still face significant challenge to manually search in design space for achieving optimal robot cell design in consideration of productivity measured by the cycle time, lifetime, and energy efficiency. In addition, robot cell designers experience even more challenge to consider the trade-offs between cycle time and lifetime as well as cycle time and energy efficiency. In this work, utilization of multi-objective optimization to optimal design of the work cell of an industrial robot is investigated. Solution space and Pareto front are obtained and used to demonstrate the trade-offs between cycle-time and critical component lifetime as well as cycle-time and energy efficiency of an industrial robot. Two types of multi-objective optimization have been investigated and benchmarked using optimal design problem of robotic work cells: 1) single-objective optimization constructed using Weighted Compromise Programming (WCP) of multiple objectives and 2) Pareto front optimization using multi-objective generic algorithm (MOGA-II). Of the industrial robotics significance, a combined design optimization problem is investigated, where design space consisting of design variables defining robot task placement and robot drive-train are simultaneously searched. Optimization efficiency and interesting trade-offs have been explored and successful results demonstrated.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In