0

Full Content is available to subscribers

Subscribe/Learn More  >

A Port-Based Agent Approach to Guiding Concept Generation for Customizing Modular Varieties

[+] Author Affiliations
Dongxing Cao, Runli Zhang

Hebei University of Technology, Tianjin, China

Karthik Ramani

Purdue University, West Lafayette, IN

Ming Wang Fu

The Hong Kong Polytechnic University, Hong Kong, China

Paper No. DETC2010-28492, pp. 101-110; 10 pages
doi:10.1115/DETC2010-28492
From:
  • ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 36th Design Automation Conference, Parts A and B
  • Montreal, Quebec, Canada, August 15–18, 2010
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4409-0 | eISBN: 978-0-7918-3881-5
  • Copyright © 2010 by ASME

abstract

As the description of design requirements at the earlier design stage is inaccurate and vague, it is difficult to figure out functional structure of a product and make sense product configuration. Therefore, it plays an important role to formally represent the process of design for product development in the conceptual design stage. Furthermore, port, as the location of intended interaction, is crucial to capture component concept and realize conceptual design for multi-solution generation. Agent is considered as an effective approach to collaboratively implementing design problem solving and reasoning. Combining both port and agent may be employed to generate new concepts of the product in order to customize product scheme varieties. In this paper, the product module attributes are firstly described. The objective is to implement modeling of design process for obtaining system new concepts to guide multi-solution generation. Secondly, an effective approach to decomposing design process is presented to describe the process of structure generations and product decomposition by formal representation. According to properties of modularity for product development and component connections, we can calculate the number of component connections and density of components. In addition, product module division and coupling degree analysis are conducted, and coupling degrees are calculated by considering the correspondence ratio and the cluster independence. A port-based knowledge building process is described for functional modeling. A port-agent collaborative design framework is given and describes different agent functions to help designers to obtain new design schemes. Finally, a case study is presented to describe the modeling process of conceptual design.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In