Full Content is available to subscribers

Subscribe/Learn More  >

Exploration of Enhanced Heat Dissipation Design for Brake Disc of High Speed Train

[+] Author Affiliations
Zhizhuang Yu, Yong Wang

Tongji University, Shanghai, China

Paper No. RTDF2010-42007, pp. 39-46; 8 pages
  • ASME 2010 Rail Transportation Division Fall Technical Conference
  • ASME 2010 Rail Transportation Division Fall Technical Conference
  • Roanoke, Virginia, USA, October 12–13, 2010
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-4406-9 | eISBN: 978-0-7918-3889-1
  • Copyright © 2010 by ASME


The function of the brake disc is to provide the ultimate guarantee of the safety of high speed trains. A braking unit includes two discs and two brake shoes. Braking performance depends on the pressure of the brake shoe and the friction between the disc and the shoe. When a train is braked, the brake disc endures a thermal load, which may affect the mechanical properties of the disc. If the thermal load exceeds the strength limit of the material, it could impact the safe running of the train. Therefore, the thermal load should be reduced as much as possible. Now the frictional surface of disc is plane and heat congregates easily in the surface area. The purpose of this paper is to explore a design for enhanced heat dissipation. A gas channel was used on the frictional surface to achieve the effect of heat dissipation. This design was analyzed by means of tribology and heat transfer theory. The distribution of gas flow was also researched. The temperature and stress field of the disc were simulated and analyzed. By the analysis it can be seen that the gas channel on the frictional surface of disc has a remarkable effect on heat dissipation in the brake disc.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In