0

Full Content is available to subscribers

Subscribe/Learn More  >

Validation and Calibration of a Proton Exchange Membrane Fuel Cell Model Against Dynamic Partial Pressure Data

[+] Author Affiliations
Arnab Roy, Ugur Pasaogullari, Michael W. Renfro, Baki M. Cetegen

University of Connecticut, Storrs, CT

Paper No. FuelCell2010-33336, pp. 811-822; 12 pages
doi:10.1115/FuelCell2010-33336
From:
  • ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2010 8th International Fuel Cell Science, Engineering and Technology Conference: Volume 1
  • Brooklyn, New York, USA, June 14–16, 2010
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4404-5 | eISBN: 978-0-7918-3875-4
  • Copyright © 2010 by ASME

abstract

Transient experimental validation and investigation of the effect of diffusivity of porous layers on the dynamic water vapor partial pressure profiles of a proton exchange membrane fuel cell (PEMFC) during load change is presented. A three dimensional, isothermal, transient, single-phase computational fluid dynamics based model is developed to validate with the water partial pressure profiles experimentally measured during start-up conditions earlier in a 50 cm2 PEMFC having a single serpentine flow path in counter-flow configuration. The fluid flow within the serpentine channel geometry is simulated using a straight channel fuel cell model with total channel length equivalent to the stretched length of the entire serpentine path incorporating the same amount of pressure drop from inlet to outlet. The model equations are solved using a multi-domain approach incorporating water transport through membrane and multi-component species transport through porous diffusion layer. The transient model predictions of water partial pressure profiles of anode and cathode channels are found to be in good agreement within the error bounds of the experimental results. This validation is also indicative of the two different time scales i.e. initial anode dip due to electro-osmotic drag and recovery due to back diffusion from cathode to anode. Steady state model predictions are compared to check for accuracy simultaneously. The model also delineates the significance of effective diffusivity of porous Gas Diffusion Layers (GDL) and Catalyst Layers (CL) on transient characteristics. In order to come up with best parameters to validate with experimental data, a sensitivity analysis with parametric variations of effective porosity of GDL and CL is performed with a single experimental data set and then applied to the remaining sets. Results show that the CL diffusivity has a more pronounced effect on water accumulation as well as on temporal water transport than GDL diffusivity. The numerical simulation thus provides a validated set of quantitative model parameters along with an insight to the underlying physics of water transport phenomena in a PEMFC.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In