0

Full Content is available to subscribers

Subscribe/Learn More  >

A Thermal Management System for a PEM Fuel Cell System in Commercial Vehicles

[+] Author Affiliations
Jong-Woo Ahn, Song-Yul Choe

Auburn University, Auburn, AL

Paper No. FuelCell2010-33217, pp. 641-649; 9 pages
doi:10.1115/FuelCell2010-33217
From:
  • ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2010 8th International Fuel Cell Science, Engineering and Technology Conference: Volume 1
  • Brooklyn, New York, USA, June 14–16, 2010
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4404-5 | eISBN: 978-0-7918-3875-4
  • Copyright © 2010 by ASME

abstract

Polymer electrolyte membrane (PEM) fuel cell operating in commercial vehicles produces a relatively high amount of heat. In order for securing durable operations, the produced heat should be rejected to keep the temperature in the cell under the limit. High temperature increases the rate of electrochemical reactions and mobility of water vapor. However, a thermal stress imposing on the thin layers of catalysts and membranes can accelerate degradation processes. Therefore, proper design of a thermal management system (TMS) and the associated control is required for ensuring highly reliable and efficient operations of the system. A typical thermal circuit consisting of a radiator, a fan, a reservoir and a coolant pump has been used to reject the excessive heat from the fuel cell. However, the capability of heat rejection is limited by sizes of the components that cannot be employed in heavy duty vehicles. In this study, we used two coolant loops, where the inner circuit consists of a bypass valve, a heat exchanger, a reservoir and a water pump and the outer circuit includes a radiator, a fan, a reservoir and a coolant pump. A state feedback control for the two loops was designed. Objectives for the controls were to maintain the temperature at the set value and to reduce the parasitic loss of the system. The controllers were tested on a dynamic model of a stack developed in the laboratory. Included is analysis of dynamic performance of the designed controllers at multiple step currents and FUDS. As a result of the proposed thermal management system, the size of radiator and the capacity of the pumps for proposed design become 10% smaller than those for the typical one. In addition, the overall net power of the fuel cell system increases to 5%.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In