0

Full Content is available to subscribers

Subscribe/Learn More  >

Free Vibration Analysis of a PEMFC Using the Finite Element Method

[+] Author Affiliations
Hasnet E. U. Ahmed, Jean W. Zu, Aimy Bazylak

University of Toronto, Toronto, ON, Canada

Paper No. FuelCell2010-33203, pp. 633-640; 8 pages
doi:10.1115/FuelCell2010-33203
From:
  • ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2010 8th International Fuel Cell Science, Engineering and Technology Conference: Volume 1
  • Brooklyn, New York, USA, June 14–16, 2010
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4404-5 | eISBN: 978-0-7918-3875-4
  • Copyright © 2010 by ASME

abstract

In this study, a free vibration analysis of a polymer electrolyte membrane fuel cell (PEMFC) is performed by modelling the PEMFC as a composite plate structure. The membrane, gas diffusion electrodes, and bi-polar plates are modelled as composite material plies. Energy equations are derived based on the Mindlin plate theory, and natural frequencies and mode shapes of the PEMFC are calculated using finite element modelling. A parametric study is conducted to investigate how the natural frequency varies as a function of thickness, Young’s modulus, and density for each component layer. It is observed that increasing the thickness of the bi-polar plates has the most significant effect on the lowest natural frequency, with a 25% increase in thickness resulting in an 11% increase in the natural frequency. The mode shapes of the PEMFC provide insight into the maximum displacement exhibited as well as the stresses experienced by the material under various vibration conditions.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In