0

Full Content is available to subscribers

Subscribe/Learn More  >

A Lumped Model of Single Droplet Deformation, Oscillation and Detachment on the GDL Surface of a PEM Fuel Cell

[+] Author Affiliations
Angelo Esposito, Pierpaolo Polverino, Cesare Pianese

Universitá degli Studi di Salerno, Fisciano, SA, Italy

Yann G. Guezennec

Ohio State University, Columbus, OH

Paper No. FuelCell2010-33171, pp. 581-592; 12 pages
doi:10.1115/FuelCell2010-33171
From:
  • ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2010 8th International Fuel Cell Science, Engineering and Technology Conference: Volume 1
  • Brooklyn, New York, USA, June 14–16, 2010
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4404-5 | eISBN: 978-0-7918-3875-4
  • Copyright © 2010 by ASME

abstract

Proton Exchange Membrane Fuel Cell performance significantly depends on electrode water content. Indeed, an excess of liquid water in the pores of the gas diffusion layer (GDL) and in the gas flow channel (GFC) can drastically bring down the output power. Depending on the operating conditions, liquid water emerging from the GDL micro-channels can form droplets, films or slugs in the GFC. In the regime of droplets formation, the interaction with the gas crossing-flow leads to an oscillating mechanisms that is fundamental to studying the detachment from the GDL surface, as the authors have shown in a previous publication. In this work, a numerical model of a droplet growing on the GDL surface is developed to describe the interaction between droplet cross-flowing gas stream. The droplet shape and its deformation are reconstructed assuming a known geometry. Therefore, a lumped force balance is enforced to determine the center of mass motion law. Oscillation frequencies during growth and at detachment are found as a function of droplet size. The model is also exploited to find the relationship between droplet critical detachment size and gas velocity. The numerical results are compared with the droplet frequency-size and detachment size-gas velocity experimental results previously presented by the authors. The matching between the numerical and experimental data is very good and is a mean of validation for the model. The low computational burden and the conciseness of the results make the model suitable for applications such as control and optimization strategies development to enhance PEMFC performance. Additionally, the model can be exploited to implement monitoring and diagnostic algorithm.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In